### Area of Interest 2, Geomechanics of CO<sub>2</sub> Reservoir Seals DE-FE0023316

Peter Eichhubl<sup>1</sup>, Pania Newell<sup>2</sup>, Jon Olson<sup>3</sup>, Tom Dewers<sup>2</sup>

<sup>1</sup> Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin <sup>2</sup>Sandia National Laboratories, Albuquerque, NM <sup>3</sup>UT Center for Petroleum & Geosystems Engineering

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500



National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

U.S. Department of Energy



### **Presentation Outline**

- Benefit
- Problem Statement
- Project Overview
- Methodology
- Accomplishments to Date
  - Fracture mechanics experiments
  - Fracture & leakage modeling
- Summary

# Benefit to the Program

- **Program goals:** Develop characterization tools, technologies, and/or methodologies that improve the ability to predict geologic storage capacity within ±30 %, improve the utilization of the reservoir by understanding how faults and fractures in a reservoir affect the flow of CO<sub>2</sub>, and ensure storage permanence.
  - Area of Interest 2 Fractured Reservoir and Seal Behavior: Develop tools and techniques to increase the accuracy and reduce the costs of assessing subsurface seal containment and the seal/reservoir interface, including the measurement of in-situ rock properties in order to develop a better understanding of seal behavior when CO<sub>2</sub> is injected into a reservoir.
- Project is designed to
  - Provide calibrated and validated numerical predictive tools for long-term prediction of reservoir seal integrity beyond the engineering (injection) time scale.
  - Contribute toward technology ensuring 99% storage permanence in the injection zone for 1000 years.

## **Problem Statement**

- Sealing efficiency of CO<sub>2</sub> reservoirs has to exceed 99%.
- Design criteria are needed that establish the long term sealing capacity of CO<sub>2</sub> reservoirs and to model leakage risk.
- Top and fault seal risk assessment well established in oil & gas exploration, but:
- <u>scCO<sub>2</sub> and CO<sub>2</sub> brine potentially interact</u> <u>physically & chemically with top seal</u>.
- Seal risk assessment criteria taking these interactions into account are needed for CO<sub>2</sub> systems.

#### **Project Overview: Goals and Objectives**

- Perform laboratory fracture mechanics testing to
  - gain fundamental understanding into fracture processes in chemically reactive systems and to
  - provide input parameters on fracture constitutive behavior, fracture rate and geometry, and deformation and transport processes involved in subcritical chemically assisted fracture growth for relevant top seal lithologies.
- Derive predictive and validated numerical models for fracture growth in chemically reactive environments relevant to CCUS top seal lithologies.
- Validate numerical & laboratory observations against microstructural and textural observations on fractures from natural  $CO_2$  seeps.
- Perform upscaled numerical simulations that are informed by field and lab results toward predictive tools for top seal *integrity analysis*, top seal mechanical failure, and impact on  $CO_2$  leakage in CCUS applications.

### Fractures in CO<sub>2</sub> caprocks Crystal Geyser field analog site







#### Active on $10^2 - 10^5$ year time scales

#### Natural fracture networks Mancos Shale at Crystal Geyser

10 m from CO<sub>2</sub> conduit



> 300 m away from CO<sub>2</sub> conduit



# Methodology

- Experimental measurement of subcritical fracture propagation in various shale lithologies
  - Double torsion test, unconfined conditions
     Short-rod test, confined conditions (scCO<sub>2</sub>)
- Textural and compositional characterization
  - Shale material used for fracture testing
  - Fractures & CO<sub>2</sub> alteration in natural systems
  - Post-mortem analysis of lab test specimens
- Numerical modeling of fracture propagation in top seals
  - Fracture network modeling using JOINTS
  - Upscaled modeling for top seal deformation using Sierra Mechanics

### Double torsion fracture mechanics testing



$$V = A \left(\frac{K_I}{K_{IC}}\right)^n$$

V: fracture propagation velocity K<sub>I</sub>: mode-I stress intensity factor K<sub>IC</sub>: mode-I fracture toughness A: pre-exponential constant n: velocity exponent, subcritical crack index (SCI)



Rijken, 2005



#### Sample geometry

### Material characterization

Marcellus Shale (carbonate-rich)

#### Woodford Shale



- Carbonate & clay
- Minor amounts of quartz and pyrite
- Quartz & clay
- Minor amounts of carbonate and feldspar

### Woodford: dry-air-water



- Strong reduction of K<sub>IC</sub> (48%) and SCI (75%) from ambient air to DI water
- Fracturing strongly facilitated in H<sub>2</sub>O saturated conditions
- K-V curves obey power-law, indicating fracturing @ stress-corrosion regime (I)
- Load relaxation technique (lines) match constant loading rate method (squares)

11

## Woodford: hydrophobic treatment



- H-treatment restricts water-sample interaction to the fracture tip
- H-treatment protects K<sub>IC</sub> from large weakening in DI water
- H-treatment has little effect on long-term SCI both in ambient air and DI water

### Woodford: effect of pH



- K<sub>IC</sub>, SCI not obviously dependent on pH
- Non-power-law K-V curves for H-treated sample
- SCI begin > SCI Untreated > SCI end
- H-treatment protects K<sub>IC</sub> from strong weakening

### Woodford: effect of salinity



- K<sub>IC</sub> dependency on salinity: Untreated: K<sub>IC</sub> ↓ as salinity ↑. H-treated: K<sub>IC</sub> ↑ as salinity ↑.
- Non-power-law K-V curves for H-treated samples.
- SCI begin > SCI Untreated > SCI end.

# Correlation between K<sub>IC</sub> & SCI



- Woodford: large drop of K<sub>IC</sub> and SCI between ambient to aqueous solutions.
- Glass and Marcellus: less change in K<sub>IC</sub> and SCI.

# Results fracture mechanics testing

- $K_{ic}$  and SCI lower in water compared to dry tests
  - Dry tests of limited applicability for aqueous subsurface systems
  - Dry tests potentially applicable to scCO<sub>2</sub> systems
- Effect of varying water chemistry minor in current tests
- Dry-out by scCO<sub>2</sub> injection could strengthen caprock
- Water increases inelastic behavior, impedes fracture growth
  - Decreased inleastic behavior under dry CO2 conditions could favor fracture growth

# JOINTS fracture network model

- Boundary element code
- Linear elastic
- Pseudo-3D, accounts for elastic interaction

   Opening-mode and mixed-mode fracture propagation
- Allows simulation of subcritical fracture propagation as function of
  - Subcritical index SCI
  - Elastic material properties
  - Distribution of nucleation sites (seed fractures)
  - For applied displacement or stress boundary conditions

#### Effect of var SCI, constant $K_{lc} = 1 \text{ MPa} \cdot \text{m}^{1/2}$









### JOINTS models for Woodford

Plan view; Fractures initiate internally



#### JOINTS models of caprock failure

- Vertical section in shale caprock
- Fractures initiate at base
- Best fracture connectivity with DI water
- Decreased fracture connectivity in dry CO<sub>2gas</sub>



# **Caprock Integrity Sierra Mechanics**

P. Newell, M. J. Martinez, P. Eichhubl, 2016, Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage, Journal of Petroleum Engineering <a href="http://doi:10.1016/j.petrol.2016.07.032">http://doi:10.1016/j.petrol.2016.07.032</a>

Test for effect of:

- wellbore orientation: vertical, horizontal
- injection rate: 3 Mt/yr, 5 Mt/yr for 30 years
- caprock/reservoir thickness: 50 m, 100 m, 200 m

on leakage across caprock with/without pre-existing fractures (implicit continuum scale)



#### Vertical wellbore

### Pore pressure within reservoir

Vertical well

Horizontal well

![](_page_21_Figure_3.jpeg)

- Lower pressure in horizontal wellbore cases
- Even for horizontal well, fractures can be reactivated causing leakage

Reservoir, cap: 100 m

### Maximum saturation of CO<sub>2</sub> on top of seal

![](_page_22_Figure_1.jpeg)

- Leakage for higher injection rates even in horizontal wellbore
- Long-term: same leakage for horizontal & vertical well @ 5 Mt/yr; later onset of leakage for horizontal well Reservoir, cap: 100 m

### Effect of layer thickness Vertical well Horizontal well

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

Thick reservoir is safer

For given reservoir thickness, thicker caprock is safer

Reservoir thickness is more important than caprock thickness

Combined reservoir & caprock thickness (h<sub>total</sub>) controls leakage amount of to the top layer High total thickness is safer

# Summary

- Wide range in fracture properties for different caprock lithologies
- Distinct stress corrosion effect observed in DT tests in water w/ varying composition
- Shale less fracture prone in dry CO<sub>2gas</sub> environment
- Fractures most transmissive at intermediate SCI
- Horizontal wells, thick reservoir & seal favor caprock integrity
  - Vertical well: Reservoir thickness most important

### Accomplishments to Date

- Fracture mechanics testing on caprock lithologies in dry & aqueous environments of varying composition
- Conducted numerical simulations on fracture network evolution by chemically aided fracture growth
- Simulated caprock leakage behavior using in Sierra Mechanics continuum models for varying well/reservoir/caprock geometry

### Next steps

- DT and short-rod fracture testing under
  - varying temperature
  - water composition
  - pressure
  - $-scCO_2$
- Integration of continuum & fracture network modeling
  - Effects of varying K<sub>ic</sub> & SCI included into Sierra Mechanics
- Validation of fracture network models with field fracture network observations

# Synergy Opportunities

- Fracture mechanics analysis of Cranfield and FutureGen II core material
- Coordination with EFRC research on reservoir rock geomechanics
- Integration of lab results with fracture network modeling (phase-field, cohesive end-zone, peridynamics)
- Integration with hydraulic fracture research

## Appendix

# Organization Chart/ Communication Plan

- Established Sandia-UT collaboration
  - Olson Schultz Eichhubl on joint industry projects
  - Dewers Newell Eichhubl on joint EFRC

![](_page_29_Figure_4.jpeg)

### Team

![](_page_30_Picture_1.jpeg)

Peter Eichhubl UT BEG

![](_page_30_Picture_3.jpeg)

Pania Newell Sandia

![](_page_30_Picture_5.jpeg)

Tom Dewers Sandia

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

Rich Schultz UT PGE

![](_page_30_Picture_10.jpeg)

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_12.jpeg)

Jon Major UT BEG

![](_page_30_Picture_14.jpeg)

Owen Callahan UT BEG

![](_page_30_Picture_16.jpeg)

Erick Wright UT BEG

### Gantt Chart

| Year 1                                                 |                     |                    |                    |                    |                      | Yea                | ar 2               |                    | Year 3               |                    |                    |                    |
|--------------------------------------------------------|---------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|
| Task/Subtask                                           | 9/1/2014-12/31/2014 | 1/1/2015-3/31/2015 | 4/1/2015-6/30/2015 | 7/1/2015-9/30/2015 | 10/1/2015-12/31/2015 | 1/1/2016-3/31/2016 | 4/1/2016-6/30/2016 | 7/1/2016-9/30/2016 | 10/1/2016-12/31/2016 | 1/1/2017-3/31/2017 | 4/1/2017-6/30/2017 | 7/1/2017-8/31/2017 |
| 1. Project Management and Planning                     | •                   | ~                  | ~                  | ~                  | ~                    | ~                  | ~                  | р                  | р                    | р                  | р                  | р                  |
| 2.1. Short rod fracture toughness tests                | *                   | *                  | *                  | *                  | *                    | *                  | *                  | *                  | *                    | *                  | *                  |                    |
| 2.2. Double torsion tests                              | •                   | •                  | •                  | •                  | •                    | •                  | •                  | р                  | р                    | р                  | р                  |                    |
| 2.3. Fracturing in water-bearing supercritical CO2     |                     | ~                  | •                  | ~                  | ~                    | •                  | •                  | р                  | р                    | р                  | р                  |                    |
| 3.1. Field fracture characterization                   | •                   | •                  | •                  | •                  | •                    | •                  | •                  | р                  |                      |                    |                    |                    |
| 3.2. Textural and compositional fracture imaging       |                     |                    |                    | р                  | р                    | р                  | р                  | р                  | р                    | р                  | р                  |                    |
| 4.1. Discrete fracture modeling using Sierra Mechanics | •                   | ~                  | ~                  | ~                  | ~                    | ~                  | ~                  | р                  | р                    | р                  | р                  |                    |
| 4.2. Fracture network modeling using JOINTS            |                     |                    |                    |                    |                      | ~                  | ~                  | р                  | р                    | р                  | р                  |                    |
| 4.3. Upscaled modeling using Kayenta                   |                     |                    |                    |                    | •                    | ~                  | ~                  | р                  |                      |                    |                    |                    |
| 5. Model validation and integration                    |                     |                    |                    |                    |                      |                    |                    |                    | р                    | р                  | р                  | р                  |

\* Short rod tests (task 2.1) are being performed under task 2.3 under confined conditions.

# Bibliography

- Journal, multiple authors:
  - P. Newell, M. J. Martinez, P. Eichhubl, 2016, Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage, Journal of Petroleum Science and Engineering, available at: <u>http://doi:10.1016/j.petrol.2016.07.032</u>